2012


Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
2012/№2

Сердечно-сосудистое сопряжение: клиническое значение, методы оценки и возможности медикаментозной коррекции

Михайлов Г. В., Орлова Я. А., Агеев Ф. Т.
ФГБУ "РКНПК МЗ и СР РФ", НИИ кардиологии имени А. Л. Мясникова, 121552, Москва, ул. 3‑я Черепковская, д. 15а

Ключевые слова: сердечно-сосудистое сопряжение, жесткость миокарда, жесткость сосудов

DOI: 10.18087/rhfj.2012.2.1667

Сердечно-сосудистое сопряжение (ССС) является одним из параметров, отражающих эффективность насосной функции серд­ца. В обзоре рассматриваются методы его оценки, клиническое значение и возможности коррекции. Имеющиеся в настоящее время данные позволяют говорить о том, что результатом нарушения ССС может явиться избыточная лабильность АД, его повышенная чувствительность к вазодилататорам и изменению объема циркулирующей крови, снижение толерантности к нагрузкам, уменьшение коронарного резерва. Однако пока существуют только единичные работы, демонстрирующие связь ССС с развитием осложнений и усугублением симптоматики ССЗ. Тем не менее уже сейчас оценка ССС может быть полезна при выборе и титрации лекарственных препаратов у пожилых пациентов, особенно при наличии выраженной гипертонической реакции на нагрузку или при ортостатических коллапсах, а также у больных СН, в том числе у кандидатов на ресинхронизирующую терапию.
  1. Antonini-Canterin F, Carerj S, Di Bello V et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review fr om the cardiologist’s point of view. Eur J Echocardiogr. 2009;10 (1):36–43.
  2. Chen CH, Nakayama M, Talbot M. Verapamil acutely reduces ventricular-vascular stiffening and improves aerobic exercise performance in elderly individuals. J Am Coll Cardiol. 1999;33 (6):1602–9.
  3. Antonini-Canterin F, Enache R, Popescu BA, Prognostic value of ventricular-arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: a five-year follow-up study. J Am Soc Echocardiogr. 2009;22 (11):1239–1245.
  4. Her AY, Kim JY, Choi EY et al. Value of ventricular stiffness index and ventriculoarterial interaction in patients with nonischemic dilated cardiomyopathy. Circ J. 2009;73 (9):1683–1690.
  5. Shah NK, Smith SM, Nichols WW et al. Carvedilol reduces aortic wave reflection and improves left ventricular / vascular coupling: a comparison with atenolol (CENTRAL Study). J Clin Hypertens (Greenwich). 2011;13 (12):917–924.
  6. Sunagawa K, Maughan W, Burkhoff D et al. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245 (5 Pt 1):H773–780.
  7. Iakovou I, Karpanou EA, Vyssoulis GP et al. Assessment of arterial ventricular coupling changes in patients under therapy with various antihypertensive agents by a non-invasive echocardiographic method. Int J Cardiol. 2004;96 (3):355–360.
  8. Kelly RP, Ting CT, Yang TM et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;86 (2):513–521.
  9. Senzaki H, Chen CH, Kass DA. Single-beat estimation of end-systolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation. 1996 Nov 15;94 (10):2497–506.
  10. Chen CH, Fetics B, Nevo E et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38 (7):2028–2034.
  11. Орел В. Р, Головина Т. Б. Гемодинамические реакции при малых нагрузках на тренажере мышц плечевого пояса. Сборник трудов ученых РГАФК 2000 г. – М.: ФОН, 2000. – с.177–183.
  12. Инструментальные методы исследования в кардиологии (Руководство). Под науч. ред. Сидоренко Г. И. – Минск, 1994. – 272 с.
  13. Ohte N, Cheng CP, Little WC.Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels. 2003;18 (3):136–141.
  14. Cohen-Solal A, Caviezel B, Himbert D, Gourgon R. Left ventricular-arterial coupling in systemic hypertension: analysis by means of arterial effective and left ventricular elastances. J Hypertens. 1994;12 (5):591–600.
  15. Dewey FE, Rosenthal D, Murphy DJ et al. Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation. 2008;117 (17):2279–2287.
  16. Batterham AM, George KP, Whyte G et al. Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems. Int J Sports Med. 1999;20 (8):495–502.
  17. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46 (3):454–462.
  18. Niki K, Sugawara M, Chang D et al. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels. 2002;17 (1):12–21.
  19. Siniawski H, Unbehaun A, Lehmkuhl H et al. Clinical and echocardiographic features in patients with dilated cardiomyopathy: wave intensity and diastolic abnormality analysis. Przegl Lek. 2002;59 (8):562–567.
  20. Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev. 2002;7 (1):51–62.
  21. Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol. 2008;105 (4):1342–1351.
  22. Heffernan KS, Patvardhan EA, Hession M. Elevated augmentation index derived from peripheral arterial tonometry is associated with abnormal ventricular-vascular coupling. Clin Physiol Funct Imaging. 2010;30 (5):313–317.
  23. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4 (1):23–36.
  24. Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J. 1993;125 (6):1659–1666.
  25. Little WC, Cheng CP. Left ventricular-arterial coupling in conscious dogs. Am J Physiol. 1991;261 (1 Pt 2):H70–76.
  26. Van den Horn G. J, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56 (2):252–261.
  27. Burkhoff D, de Tombe P. P, Hunter WC et al. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. Am J Physiol. 1991;260 (2 Pt 2):H569–578.
  28. Redfield MM, Jacobsen SJ, Borlaug BA et al. Age- and gender-related ventricular-vascular stiffening: a community based study. Circulation. 2005;112 (15):2254–2262.
  29. Dehmer GJ, Firth BG, Lewis SE et al. Direct measurement of cardiac output by gated equilibrium blood pool scintigraphy: validation of scintigraphic volume measurements by a nongeometric technique. Am J Cardiol. 1981;47 (5):1061–1067.
  30. Sorensen SG, Ritchie JL, Caldwell JH et al. Serial exercise radionuclide angiography. Validation of count-derived changes in cardiac output and quantitation of maximal exercise ventricular volume change after nitroglycerin and propranolol in normal men. Circulation. 1980;61 (3):600–609.
  31. Little WC, Cheng CP. Effect of exercise on left ventricular– vascular coupling assessed in the pressure – volume plane. Am J Physiol. 1993;264 (5 Pt 2):H1629–633.
  32. Sharman JE, Lim R, Qasem AM et al. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 2006;47 (6):1203–1208.
  33. Sharman JE, McEniery CM, Campbell RI et al. The effect of exercise on large artery haemodynamics in healthy young men. Eur J Clin Invest. 2005;35 (12):738–744.
  34. Najjar SS, Schulman SP, Gerstenblith G et al. Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol. 2004;44 (3):611–617.
  35. Chantler PD, Melenovsky V,Schulman SP et al. The sex-specific impact of systolic hypertension and systolic blood pressure on arterial-ventricular coupling at rest and during exercise. Am J Physiol Heart Circ Physiol. 2008;295 (1):H145–153.
  36. Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285 (2):H614–620.
  37. Segers P, Stergiopulos N, Westerhof N. Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol. 2002;282 (3):H1041–1046.
  38. Otsuki T, Maeda S, Iemitsu M et al. Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol (Oxf). 2006;188 (1):15–20.
  39. Otsuki T, Maeda S, Iemitsu M et al. Systemic arterial compliance, systemic vascular resistance, and effective arterial elastance during exercise in endurance-trained men. Am J Physiol Regul Integr Comp Physiol. 2008;295 (1):R228–235.
  40. Chen C. H, Nakayama M, Nevo E et al. Coupled systolic-ventricular and vascular stiffening with age implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32 (5):1221–1227.
  41. Cohen-Solal A, Caviezel B, Laperche T, Gourgon R. Effects of aging on left ventricular-arterial coupling in man: assessment by means of arterial effective and left ventricular elastances. J Hum Hypertens. 1996;10 (2):111–116.
  42. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. III. Cellular and molecular clues to heart and arterial aging. Circulation. 2003;107 (3):490–497.
  43. Olivetti G, Giordano G, Corradi D et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26 (4):1068–1079.
  44. Kass DA, Marino P, Maughan WL, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation. 1989;80 (6):1783–1794.
  45. Rutan GH, Hermanson B, Bild DE et al. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension. 1992;19 (6):508–519.
  46. Jansen RW, Connelly CM, Kelley-Gagnon MM et al. Postprandial hypotension in elderly patients with unexplained syncope. Arch Intern Med. 1995;155 (9):945–952.
  47. Jansen RW, Lipsitz LA. Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med. 1995;122 (4):286–295.
  48. Capasso JM, Remily RM, Smith RH, Sonnenblick EH. Sex differences in myocardial contractility in the rat. Basic Res Cardiol. 1983;78 (2):156–171.
  49. Ong KL, Cheung BMY, Man YB et al. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49 (1):69–75.
  50. Arnett DK, Tyroler HA, Burke G et al. Hypertension and subclinical carotid artery atherosclerosis in blacks and whites. The Atherosclerosis Risk in Communities Study. ARIC Investigators. Arch Intern Med. 1996;156 (17):1983–1989.
  51. Amar J, Ruidavets JB, Chamontin B et al. Arterial stiffness and cardiovascular risk factors in a population-based study. J Hypertens. 2001;19 (3):381–387.
  52. Nichols WW, Nicolini FA, Pepine CJ. Determinants of isolated systolic hypertension in the elderly. J Hypertens Suppl. 1992;10 (6):S73–77.
  53. Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 2003;89 (9):1104–1109.
  54. Saba PS, Ganau A, Devereux RB et al. Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens. 1999;17 (7):1007–1015.
  55. Saeki A, Recchia F, Kass DA. Systolic flow augmentation in hearts ejecting into a model of stiff aging vasculature. Influence on myocardial perfusiondemand balance. Circ Res. 1995;76 (1):132–141.
  56. Kass DA, Saeki A, Tunin RS, Recchia FA. Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion. Circulation. 1996;93 (8):1533–1541.
  57. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65 (2):483–493.
  58. Sasayama S, Asanoi H. Coupling between the heart and arterial system in heart failure. Am J Med. 1991;90 (5B): 14S-18S.
  59. Cohen-Solal A, Faraggi M, Czitrom D et al. Left ventricular-arterial system coupling at peak exercise in dilated nonischemic cardiomyopathy. Chest. 1998;113 (4):870–877.
  60. Wong RC, Dumont CA, Austin BA et al. Relation of ventricular-vascular coupling to exercise capacity in ischemic cardiomyopathy: a cardiac multi-modality imaging study. Int J Cardiovasc Imaging. 2010;26 (2):151–159.
  61. Owan TE, Hodge DO, Herges RM et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355 (3):251–259.
  62. Klapholz M, Maurer M, Lowe AM et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43 (8):1432–1438.
  63. Lam CS, Roger VL, Rodeheffer RJ et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115 (15):1982–1990.
  64. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction. Circulation. 2003;107 (5):714–720.
  65. Borlaug BA, Melenovsky V, Russell SD et al. Impaired chronotropic and vasodilator reserves lim it exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114 (20):2138–2147.
  66. Zanon F, Aggio S, Baracca E et al. Ventricular-arterial coupling in patients with heart failure treated with cardiac resynchronization therapy: may we predict the long-term clinical response? Eur J Echocardiogr. 2009;10 (1):106–111.
  67. Chantler PD, Nussbacher A, Gerstenblith G et al. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside. J Am Coll Cardiol. 2000;35 (6):1697–1698.
  68. Barletta G, Del Bene MR. Effects of dipyridamole on cardiac and systemic haemodynamics: real-time three-dimensional stress echo beyond regional wall motion. J Cardiovasc Med (Hagerstown). 2011;12 (7):455–459.
  69. Pagel PS, Hettrick DA, Warltier DC. Comparison of the effects of levosimendan, pimobendan, and milrinone on canine left ventricular-arterial coupling and mechanical efficiency. Basic Res Cardiol. 1996;91 (4):296–307.
  70. Rinder MR, Miller TR, Ehsani AA. Effects of endurance exercise training on left ventricular systolic performance and ventriculoarterial coupling in patients with coronary artery disease. Am Heart J. 1999;138 (1 Pt 1):169–174.
  71. Warner JG, Metzger DC, Kitzman DW et al. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J Am Coll Cardiol. 1999;33 (6):1567–1572.
  72. Little WC, Zile MR, Klein A et al. Effect of losartan and hydrochlorothiazide on exercise tolerance in exertional hypertension and left ventricular diastolic dysfunction. Am J Cardiol. 2006;98 (3):383–385.
  73. Fleg JL, Schulman S, O’Connor F et al. Effects of acute beta-adrenergic receptor blockade on age-associated changes in cardiovascular performance during dynamic exercise. Circulation. 1994;90 (5):2333–2341.
  74. Lijnen P, Petrov V. Induction of cardiac fibrosis by aldosterone. 2000; 32 (6):865–879.
  75. Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341 (10):709–717.
  76. Cockcroft JR. Perindopril: the reasonable choice in patients with coronary artery disease. Int J Clin Pract. 2005;59 (5):600–604.
  77. Morikawa-Futamatsu K, Adachi S, Maejima Y et al. HMG-CoA reductase inhibitor fluvastatin prevents angiotensin II-induced cardiac hypertrophy via Rho kinase and inhibition of cyclin D1. Life Sci. 2006,29;79 (14):1380–1390.
  78. Takimoto E, Champion H. C, Li M. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11 (2):214–222.
  79. Asif M, Egan J, Vasan S et al. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A. 2000;97 (6):2809–2813.
  80. Bruel A, Oxlund H. Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis. 1996;127 (2):155–165.
  81. Kass DA, Shapiro EP, Kawaguchi M et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104 (13):1464–1470.
  82. Hartog JW, Willemsen S, van Veldhuisen DJ et al. Effects of alagebrium, an advanced glycation endproduct breaker, on exercise tolerance and cardiac function in patients with chronic heart failure. Eur J Heart Fail. 2011;13 (8):899–908.
  83. Steendijk P, Tulner SA, Bax JJ et al. Hemodynamic effects of long-term cardiac resynchronization therapy: analysis by pressure-volume loops. Circulation. 2006;113 (10):1295–1304.
Михайлов Г.В., Орлова Я.А., Агеев Ф.Т. Сердечно-сосудистое сопряжение: клиническое значение, методы оценки и возможности медикаментозной коррекции. Журнал Сердечная Недостаточность. 2012;13(2):111-117.

Для доступа к данному материалу пожалуйста авторизуйтесь или зарегистрируйтесь

Зарегистрируйтесь Авторизуйтесь
Ru En